Incorporating Rigid Structures in Non-rigid Registration Using Triangular B-Splines

نویسندگان

  • Kexiang Wang
  • Ying He
  • Hong Qin
چکیده

For non-rigid registration, the objects in medical images are usually treated as a single deformable body with homogeneous stiffness distribution. However, this assumption is invalid for certain parts of the human body, where bony structures move rigidly, while the others may deform. In this paper, we introduce a novel registration technique that models local rigidity of pre-identified rigid structures as well as global non-rigidity in the transformation field using triangular B-splines. In contrast to the conventional registration method based on tensor-product B-splines, our approach recovers local rigid transformation with fewer degrees of freedom (DOFs), and accurately simulates sharp features (C continuity) along the interface between deformable regions and rigid structures, because of the unique advantages offered by triangular B-splines, such as flexible triangular domain, local control and space-varying smoothness modeling. The accurate matching of the source image with the target one is accomplished through the use of a variational framework, in which a composite energy, measuring the image dissimilarity and enforcing local rigidity and global smoothness, is minimized subject to pre-defined point-based constraints. The algorithm is tested on both synthetic and real 2D images for its applicability. The experimental results show that, by accurately modeling sharp features using triangular B-splines, the deformable regions in the vicinity of rigid structures are less constrained by the global smoothness regularization and therefore contribute extra flexibility to the optimization process. Consequently, the registration quality is improved considerably.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffeomorphic Registration Using B-Splines

In this paper we propose a diffeomorphic non-rigid registration algorithm based on free-form deformations (FFDs) which are modelled by B-splines. In contrast to existing non-rigid registration methods based on FFDs the proposed diffeomorphic non-rigid registration algorithm based on free-form deformations (FFDs) which are modelled by B-splines. To construct a diffeomorphic transformation we com...

متن کامل

A General Learning Framework for Non-rigid Image Registration

This paper presents a general learning framework for non-rigid registration of MR brain images. Given a set of training MR brain images, three major types of information are particularly learned, and further incorporated into a HAMMER registration algorithm for improving the performance of registration. First, the best features are learned from different types of local image descriptors for eac...

متن کامل

Comparison and evaluation of rigid and non-rigid registration of breast MR images

In this paper we present a new approach for the non-rigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed: The global motion of the breast is modelled by an a ne transformation while the local breast motion is described by a free-form deformation (FFD) based on B-splines. Normalised mutual information is used as a ...

متن کامل

Non-Rigid Registration of Medical Images using an Automated Method

This paper presents the application of a signal intensity independent registration criterion for non-rigid body registration of medical images. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the ratios between signal and background voxels to a standard high value. The mean squared value o...

متن کامل

Non-rigid registration of multiphoton microscopy images using B-splines

Optical microscopy poses many challenges for digital image analysis. One particular challenge includes correction of image artifacts due to respiratory motion from specimens imaged in vivo. We describe a non-rigid registration method using B-splines to correct these motion artifacts. Current attempts at non-rigid medical image registration have typically involved only a single pair of images. E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005